Browsing by Author "Kariuki, Samuel"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Publication Open Access An integrated study of human and animal infectious disease in the Lake Victoria crescent small-holder crop-livestock production system, Kenya(BMC Infectious Diseases, 2017-06-30) Glanville, William A. de; Thomas, Lian F.; Cook, Elizabeth A. J.; Kariuki, Samuel; Wamae, Claire N.; Fèvre, Eric M.Background: The neglected zoonotic diseases (NZD) are an understudied group that are a major cause of illness throughout the developing world. In general, little is known about the prevalence and burden of NZDs in affected communities, particularly in relation to other infectious diseases with which they are often co-endemic. We describe the design and descriptive epidemiological outputs from an integrated study of human and animal zoonotic and non-zoonotic disease in a rural farming community in western Kenya. Methods: This cross-sectional survey involved 2113 people, their cattle (n = 983) and pigs (n = 91). People and animals were tested for infection or exposure to a wide range of zoonotic and non-zoonotic pathogens. Prevalence estimates, with adjustment for the complex study design, were derived. Evidence for spatial clustering in exposure or infection was identified using the spatial scan statistic. Results: There was a high prevalence of human parasitism in the community, particularly with hookworm (Ancylostoma duodenale or Necator americanus) (36.3% (95% CI 32.8–39.9)), Entamoeba histolytica/dispar (30.1% (95% CI 27.5–32.8)), and Plasmodium falciparum (29.4% (95% CI 26.8–32.0)). Human infection with Taenia spp. was also prevalent (19.7% (95% CI 16. 7–22.7)), while exposure to other zoonotic pathogens was comparatively rarer (Brucella spp., 0.6% (95% CI 0.2–0.9); Coxiella burnetii, 2.2% (95% CI 1.5–2.9); Rift Valley fever, 0.5% (95% CI 0.2–0.8)). A low prevalence of exposure to Brucella spp. was observed in cattle (0.26% (95% CI 0–0.56). This was higher for Rift Valley fever virus (1.4% (95% CI 0.5–2.22)) and C. burnetii (10.0% (95% CI 7.7–12.2)). The prevalence of Taenia spp. cysticercosis was 53.5% (95% CI 48.7–58.3) in cattle and 17.2% (95% CI 9.1–25.3) in pigs. Mycobacterium bovis infection was found in 2.2% of cattle (95% CI 1.3–3.2), while the prevalence of infection with Mycobacterium spp. was 8.2% (95% CI 6.8–9.6) in people.Publication Open Access An integrated study of human and animal infectious disease in the Lake Victoria crescent small-holder crop-livestock production system, Kenya.(BioMedCentral - BMC Infectious Diseases, 2017-06-30) Fèvre, Eric M.; de Glanville, William A.; Thomas, Lian F.; Cook, Elizabeth A. J.; Kariuki, Samuel; Wamae, Claire N.The neglected zoonotic diseases (NZD) are an understudied group that are a major cause of illness throughout the developing world. In general, little is known about the prevalence and burden of NZDs in affected communities, particularly in relation to other infectious diseases with which they are often co-endemic. We describe the design and descriptive epidemiological outputs from an integrated study of human and animal zoonotic and non-zoonotic disease in a rural farming community in western Kenya. Methods: This cross-sectional survey involved 2113 people, their cattle (n = 983) and pigs (n = 91). People and animals were tested for infection or exposure to a wide range of zoonotic and non-zoonotic pathogens. Prevalence estimates, with adjustment for the complex study design, were derived. Evidence for spatial clustering in exposure or infection was identified using the spatial scan statistic. Results: There was a high prevalence of human parasitism in the community, particularly with hookworm (Ancylostoma duodenale or Necator americanus) (36.3% (95% CI 32.8–39.9)), Entamoeba histolytica/dispar (30.1% (95% CI 27.5–32.8)), and Plasmodium falciparum (29.4% (95% CI 26.8–32.0)). Human infection with Taenia spp. was also prevalent (19.7% (95% CI 16.7–22.7)), while exposure to other zoonotic pathogens was comparatively rarer (Brucella spp., 0.6% (95% CI 0.2–0.9); Coxiella burnetii, 2.2% (95% CI 1.5–2.9); Rift Valley fever, 0.5% (95% CI 0.2–0.8)). A low prevalence of exposure to Brucella spp. was observed in cattle (0.26% (95% CI 0–0.56). This was higher for Rift Valley fever virus (1.4% (95% CI 0.5–2.22)) and C. burnetii (10.0% (95% CI 7.7–12.2)). The prevalence of Taenia spp. cysticercosis was 53.5% (95% CI 48.7–58.3) in cattle and 17.2% (95% CI 9.1–25.3) in pigs. Mycobacterium bovis infection was found in 2.2% of cattle (95% CI 1.3–3.2), while the prevalence of infection with Mycobacterium spp. was 8.2% (95% CI 6.8–9.6) in people. Conclusion: Zoonotic infections in people and animals occur in the context of a wide range of co-endemic pathogens in a rural community in western Kenya. The wide diversity of pathogens under study provides a unique opportunity to explore the distribution and determinants of infection in a multi-pathogen, multi-host system.Publication Open Access Modelling the risk of Taenia solium exposure from pork produced in western Kenya(PLOS Neglected Tropical Diseases, 2017-02-17) Thomas, Lian F.; Glanville, William A. de; Cook, Elizabeth A. J.; Bronsvoort, Barend M. De C.; Handel, Ian; Wamae, Claire N.; Kariuki, Samuel; Fèvre, Eric M.The tapeworm Taenia solium is the parasite responsible for neurocysticercosis, a neglected tropical disease of public health importance, thought to cause approximately 1/3 of epilepsy cases across endemic regions. The consumption of undercooked infected pork perpetuates the parasite's life-cycle through the establishment of adult tapeworm infections in the community. Reducing the risk associated with pork consumption in the developing world is therefore a public health priority. The aim of this study was to estimate the risk of any one pork meal in western Kenya containing a potentially infective T. solium cysticercus at the point of consumption, an aspect of the parasite transmission that has not been estimated before. To estimate this, we used a quantitative food chain risk assessment model built in the @RISK add-on to Microsoft Excel. This model indicates that any one pork meal consumed in western Kenya has a 0.006 (99% Uncertainty Interval (U.I). 0.0002±0.0164) probability of containing at least one viable T. solium cysticercus at the point of consumption and therefore being potentially infectious to humans. This equates to 22,282 (99% U.I. 622± 64,134) potentially infective pork meals consumed in the course of one year within Busia District alone. This model indicates a high risk of T. solium infection associated with pork consumption in western Kenya and the work presented here can be built upon to investigate the efficacy of various mitigation strategies for this locality.Publication Open Access Modelling the risk of Taenia solium exposure from pork produced in western Kenya(Plos Neglected Tropical Disease, 2017-02-17) Glanville, William A. de; Thomas, Lian F.; Cook, Elizabeth A. J.; Bronsvoort, Barend M. De C.; Fèvre, Eric M.; Handel, Ian; Wamae, Claire N.; Kariuki, SamuelThe tapeworm Taenia solium is the parasite responsible for neurocysticercosis, a neglected tropical disease of public health importance, thought to cause approximately 1/3 of epilepsy cases across endemic regions. The consumption of undercooked infected pork perpetuates the parasite’s life-cycle through the establishment of adult tapeworm infections in the com- munity. Reducing the risk associated with pork consumption in the developing world is therefore a public health priority. The aim of this study was to estimate the risk of any one pork meal in western Kenya containing a potentially infective T. solium cysticercus at the point of consumption, an aspect of the parasite transmission that has not been estimated before. To estimate this, we used a quantitative food chain risk assessment model built in the @RISK add-on to Microsoft Excel. This model indicates that any one pork meal con- sumed in western Kenya has a 0.006 (99% Uncertainty Interval (U.I). 0.0002–0.0164) prob- ability of containing at least one viable T. solium cysticercus at the point of consumption and therefore being potentially infectious to humans. This equates to 22,282 (99% U.I. 622– 64,134) potentially infective pork meals consumed in the course of one year within Busia District alone. This model indicates a high risk of T. solium infection associated with pork consumption in western Kenya and the work presented here can be built upon to investigate the efficacy of various mitigation strategies for this locality.Publication Open Access The sero-epidemiology of Rift Valley fever in people in the Lake Victoria Basin of western Kenya(PLOS Neglected Tropical Diseases, 2017-06-07) Cook, Elizabeth Anne Jessie; Grossi-Soyster, Elysse Noel; Glanville, William Anson de; Thomas, Lian Francesca; Kariuki, Samuel; Bronsvoort, Barend Mark de Clare; Wamae, Claire Njeri; LaBeaud, Angelle Desiree; Fèvre, Eric MauriceRift Valley fever virus (RVFV) is a zoonotic arbovirus affecting livestock and people. This study was conducted in western Kenya where RVFV outbreaks have not previously been reported. The aims were to document the seroprevalence and risk factors for RVFV antibodies in a community-based sample from western Kenya and compare this with slaughterhouse workers in the same region who are considered a high-risk group for RVFV exposure. The study was conducted in western Kenya between July 2010 and November 2012. Individuals were recruited from randomly selected homesteads and a census of slaughterhouses. Structured questionnaire tools were used to collect information on demographic data, health, and risk factors for zoonotic disease exposure. Indirect ELISA on serum samples determined seropositivity to RVFV. Risk factor analysis for RVFV seropositivity was conducted using multi-level logistic regression. A total of 1861 individuals were sampled in 384 homesteads. The seroprevalence of RVFV in the community was 0.8% (95% CI 0.5± 1.3). The variables significantly associated with RVFV seropositivity in the community were increasing age (OR 1.2; 95% CI 1.1±1.4, p<0.001), and slaughtering cattle at the homestead (OR 3.3; 95% CI 1.0±10.5, p = 0.047). A total of 553 slaughterhouse workers were sampled in 84 ruminant slaughterhouses. The seroprevalence of RVFV in slaughterhouse workers was 2.5% (95% CI 1.5±4.2). Being the slaughterman, the person who cuts the animal's throat (OR 3.5; 95% CI 1.0±12.1, p = 0.047), was significantly associated with RVFV seropositivity. This study investigated and compared the epidemiology of RVFV between community members and slaughterhouse workers in western Kenya. The data demonstrate that slaughtering animals is a risk factor for RVFV seropositivity and that slaughterhouse workers are a high-risk group for RVFV seropositivity in this environment. These risk factorshave been previously reported in other studies providing further evidence for RVFV circulation in western Kenya.Publication Open Access Serological and spatial analysis of alphavirus and flavivirus prevalence and risk factors in a rural community in western Kenya(PLOS Neglected Tropical Diseases, 2017-10-17) Grossi-Soyster, Elysse N.; Cook, Elizabeth A. J.; Glanville, William A. de; Thomas, Lian F.; Krystosik, Amy R.; Lee, Justin; Wamae, C. Njeri; Kariuki, Samuel; Fèvre, Eric M.; LaBeaud, A. DesireeAlphaviruses, such as chikungunya virus, and flaviviruses, such as dengue virus, are (re)- emerging arboviruses that are endemic in tropical environments. In Africa, arbovirus infections are often undiagnosed and unreported, with febrile illnesses often assumed to be malaria. This cross-sectional study aimed to characterize the seroprevalence of alphaviruses and flaviviruses among children (ages 5±14, n = 250) and adults (ages 15 75, n = 250) in western Kenya. Risk factors for seropositivity were explored using Lasso regression. Overall, 67% of participants showed alphavirus seropositivity (CI95 63%±70%), and 1.6% of participants showed flavivirus seropositivity (CI95 0.7%±3%). Children aged 10±14 were more likely to be seropositive to an alphavirus than adults (p < 0.001), suggesting a recent transmission period. Alphavirus and flavivirus seropositivity was detected in the youngest participants (age 5±9), providing evidence of inter-epidemic transmission. Demographic variables that were significantly different amongst those with previous infection versus those without infection included age, education level, and occupation. Behavioral and environmental variables significantly different amongst those in with previous infection to those without infection included taking animals for grazing, fishing, and recent village flooding. Experience of recent fever was also found to be a significant indicator of infection (p = 0.027). These results confirm alphavirus and flavivirus exposure in western Kenya, while illustrating significantly higher alphavirus transmission compared to previous studies.