Browsing by Author "Shaira, A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Publication Metadata only A kinetic and mechanistic study into the substitution behaviour of platinum(ii) polypyridyl complexes with a series of azole ligands(Dalton Transactions, 2013-04-04) Shaira, A.; Reddy, D.; Jaganyi, D.The kinetics of chloride substitution from a series of square-planar platinum(II) complexes, viz. [Pt(terpyridine)Cl]+, (Pt1), [Pt{2-(2′-pyridyl)-1,10-phenanthroline}Cl]Cl, (Pt2), [Pt{4′-(2′′′-CH3-phenyl)-2,2′:6′,2′′-terpyridine}Cl]CF3SO3 (Pt3) and [Pt{4′-(2′′′-CH3-phenyl)-6-(3′′-isoquinoyl)-2,2′bipyridine}Cl]SbF6 (Pt4) were studied using a series of five-membered heterocyclic neutral nitrogen donor nucleophiles, viz. pyrazole (Pz), triazole (Tz), imidazole (Im), 1-methylimidazole (MIm) and 1,2-dimethylimidazole (DMIm) under pseudo-first-order conditions in methanol using UV/Visible spectrophotometry and conventional stopped-flow techniques. The observed second-order rate constants, k2, followed a two term rate law kobs = k2[nucleophile] + ks except for DMIm with Pt1, Pt3, Pt4 and Pz, Tz with Pt1. Increasing the π-conjugation in the cis position decreases the rate of chloride substitution by decreasing the π-acceptor property of the terpy moiety. However, increasing the π-conjugation in the cis/trans position increases the rate of substitution by enhancing the π-acceptor property within the ligand framework whereby increasing the reactivity of the metal centre. The observed trend for the reactivity was Pt2 > Pt1 > Pt3 > Pt4. The substitution kinetics was influenced by the basicity of the incoming nucleophiles except for the sterically hindered nucleophile, DMIm. The general trend observed for the reactivity of the nucleophiles is MIm > Im > DMIm > Pz > Tz.Publication Metadata only A kinetic and mechanistic study of dinuclear Pt(II) 2,2′:6′,2″-terpyridine compounds bridged with polyethyleneglycol ether flexible linkers(Coordination Chemistry, 2015-07-16) Shaira, A.; Jaganyi, D.A series of dinuclear Pt(II) complexes bridged with polyethyleneglycol ether of the type [ClPt(tpy)O(CH2CH2O)n(tpy)PtCl]Cl2 where n = 1 (Ptdteg), 2 (Ptdtdeg), 3 (Ptdtteg), 4 (Ptdttteg), and linker-free complex, (Ptdt) (where tpy = 2,2′:6′,2″-terpyridine), were synthesized and characterized to investigate the role of bridging polyethyleneglycol ether linker on the substitution reactivity of dinuclear Pt(II) complexes. Substitution reactions were studied using thiourea nucleophiles, viz. thiourea (TU), 1,3-dimethyl-2-thiourea (DMTU), 1,1,3,3-tetramethyl-2-thiourea (TMTU) under pseudo-first-order conditions as a function of concentration and temperature by conventional stopped-flow reaction analyzer. The reactions gave single exponential fits following the rate law kobs = k2[Nu]. Introduction of polyethyleneglycol ether linker decreases the electrophilicity of the platinum center and the whole complex. The results obtained indicate that the rate of substitution is controlled by both electronic and steric hindrance which increases with the length of the linker. Experimental results are supported by density functional theory calculations and structures obtained at B3LYP/LANL2DZ level. The order of the reactivity of the nucleophiles is TU > DMTU > TMTU. The magnitude and the size of the enthalpy of activation and entropy of activation support an associative mode of mechanism, where bond formation in the transition state is favored.Publication Open Access A kinetic and mechanistic study of dinuclear Pt(II) 2,2′:6′,2″-terpyridine compounds bridged with polyethyleneglycol ether flexible linkers(Coordination Chemistry, 2015-07-16) Shaira, A.; Jaganyi, D.A series of dinuclear Pt(II) complexes bridged with polyethyleneglycol ether of the type [ClPt(tpy)O(CH2CH2O)n(tpy)PtCl]Cl2 where n = 1 (Ptdteg), 2 (Ptdtdeg), 3 (Ptdtteg), 4 (Ptdttteg), and linker-free complex, (Ptdt) (where tpy = 2,2′:6′,2″-terpyridine), were synthesized and characterized to investigate the role of bridging polyethyleneglycol ether linker on the substitution reactivity of dinuclear Pt(II) complexes. Substitution reactions were studied using thiourea nucleophiles, viz. thiourea (TU), 1,3-dimethyl-2-thiourea (DMTU), 1,1,3,3-tetramethyl-2-thiourea (TMTU) under pseudo-first-order conditions as a function of concentration and temperature by conventional stopped-flow reaction analyzer. The reactions gave single exponential fits following the rate law kobs = k2[Nu]. Introduction of polyethyleneglycol ether linker decreases the electrophilicity of the platinum center and the whole complex. The results obtained indicate that the rate of substitution is controlled by both electronic and steric hindrance which increases with the length of the linker. Experimental results are supported by density functional theory calculations and structures obtained at B3LYP/LANL2DZ level. The order of the reactivity of the nucleophiles is TU > DMTU > TMTU. The magnitude and the size of the enthalpy of activation and entropy of activation support an associative mode of mechanism, where bond formation in the transition state is favored.Publication Open Access A kinetic and mechanistic study of dinuclear Pt(II) 2,2′:6′,2″-terpyridine compounds bridged with polyethyleneglycol ether flexible linkers(Journal of Coordination Chemistry, 2015-07-16) Shaira, A.; Jaganyi, D.A series of dinuclear Pt(II) complexes bridged with polyethyleneglycol ether of the type [ClPt(tpy)O(CH2CH2O)n(tpy)PtCl]Cl2 where n = 1 (Ptdteg), 2 (Ptdtdeg), 3 (Ptdtteg), 4 (Ptdttteg), and linker-free complex, (Ptdt) (where tpy = 2,2′:6′,2″-terpyridine), were synthesized and characterized to investigate the role of bridging polyethyleneglycol ether linker on the substitution reactivity of dinuclear Pt(II) complexes. Substitution reactions were studied using thiourea nucleophiles, viz. thiourea (TU), 1,3-dimethyl-2-thiourea (DMTU), 1,1,3,3-tetramethyl-2-thiourea (TMTU) under pseudo-first-order conditions as a function of concentration and temperature by conventional stopped-flow reaction analyzer. The reactions gave single exponential fits following the rate law kobs = k2[Nu]. Introduction of polyethyleneglycol ether linker decreases the electrophilicity of the platinum center and the whole complex. The results obtained indicate that the rate of substitution is controlled by both electronic and steric hindrance which increases with the length of the linker. Experimental results are supported by density functional theory calculations and structures obtained at B3LYP/LANL2DZ level. The order of the reactivity of the nucleophiles is TU > DMTU > TMTU. The magnitude and the size of the enthalpy of activation and entropy of activation support an associative mode of mechanism, where bond formation in the transition state is favored.