Publication: Role of a 2,3-bis(pyridyl)pyrazinyl chelate bridging ligand in the reactivity of Ru(ii)–Pt(ii) dinuclear complexes on the substitution of chlorides by thiourea nucleophiles – a kinetic study
dc.contributor.author | Robinson, Ross | |
dc.contributor.author | Mambandaa, Allen | |
dc.contributor.author | Jaganyi, Deogratius | |
dc.contributor.author | Bellam,Rajesh | |
dc.date.accessioned | 2024-06-12T13:20:45Z | |
dc.date.available | 2024-06-12T13:20:45Z | |
dc.date.issued | 2018-06-18 | |
dc.description.abstract | Chloride substitution from [(1,10-phenanthroline)2Ru(II)(μ-2,3-bis(2-pyridyl)pyrazine)Pt(II)dichloride]2+ (RuPt1), [(1,10-phenanthroline)2Ru(II)(μ-2,3-bis(2-pyridyl)quinoxaline)Pt(II)dichloride]2+ (RuPt2) and [(1,10-phenanthroline)2Ru(II)(μ-2,3-bis(2-pyridyl)benzo[g]quinoxaline)Pt(II)dichloride]2+ (RuPt3) by thiourea (TU), 1,3-dimethyl-2-thioura (DMTU) and 1,1,3,3-tetra methyl-2-thiourea (TMTU) was studied in a methanol medium (I = 0.10 M) under pseudo-first-order conditions. The rate of substitution was investigated as a function of concentration of nucleophile and temperature using the stopped-flow technique. Two consecutive substitution steps were observed. The first and fastest step was ascribed to the simultaneous substitution of the two chloride co-ligands by incoming nucleophiles according to the rate law: k1stobs = k1st2[Nu]. The subsequent step was assigned to the dechelation of the rigid 2,3-bis(pyridyl)pyrazinyl bridging ligand from the Pt(II) centres of the substituted intermediates to give Pt(Nu)42+ and (phen)2Ru(II)(2,3-bis(pyridyl)pyrazinyl) groups as products. The rate law for this step is k2ndobs = k2nd2[Nu] + k2nd−2. The second-order kinetics and large negative entropies for both steps support an associative mechanism of substitution. The rate of chloride substitution was RuPt1 ≪ RuPt2 < RuPt3. This is also the order of increase in the π-surface of the bridging ligand and an indication that π-back donation of electron density from the Pt-5dπ orbitals into the π*-acceptor bridging ligand is the dominant factor controlling the substitution of the chloride from the complexes. The nucleophiles’ order of reactivity was TU > DMTU > TMTU, in accordance with their steric bulk. | |
dc.identifier.uri | https://doi.org/10.1039/C8NJ02096E | |
dc.identifier.uri | https://erepository.mku.ac.ke/handle/123456789/5889 | |
dc.language.iso | en | |
dc.publisher | Royal society of chemistry | |
dc.subject | (pyridyl)pyrazinyl chelate | |
dc.subject | dinuclear complexes | |
dc.subject | Chloride substitution | |
dc.title | Role of a 2,3-bis(pyridyl)pyrazinyl chelate bridging ligand in the reactivity of Ru(ii)–Pt(ii) dinuclear complexes on the substitution of chlorides by thiourea nucleophiles – a kinetic study | |
dc.type | Article | |
dspace.entity.type | Publication |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: